Rapamycin regulates biochemical metabolites

نویسندگان

  • Paola Tucci
  • Giovanni Porta
  • Massimiliano Agostini
  • Alexey Antonov
  • Alexander Vasilievich Garabadgiu
  • Gerry Melino
  • Anne E Willis
چکیده

The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth, and deregulation of this pathway is associated with tumorigenesis. p53, and its less investigated family member p73, have been shown to interact closely with mTOR pathways through the transcriptional regulation of different target genes. To investigate the metabolic changes that occur upon inhibition of the mTOR pathway and the role of p73 in this response primary mouse embryonic fibroblast from control and TAp73(-/-) were treated with the macrocyclic lactone rapamycin. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analysis were used to obtain a rapamycin-dependent global metabolome profile from control or TAp73(-/-) cells. In total 289 metabolites involved in selective pathways were identified; 39 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis.

mTORC1 (mammalian target of rapamycin complex 1) is controlled by diverse signals (e.g. hormones, growth factors, nutrients and cellular energy status) and regulates a range of processes including anabolic metabolism, cell growth and cell division. We have studied the impact of inhibiting mTOR on protein synthesis in human cells. Partial inhibition of mTORC1 by rapamycin has only a limited impa...

متن کامل

Genetic defects in SAPK signalling, chromatin regulation, vesicle transport and CoA-related lipid metabolism are rescued by rapamycin in fission yeast

Rapamycin inhibits TOR (target of rapamycin) kinase, and is being used clinically to treat various diseases ranging from cancers to fibrodysplasia ossificans progressiva. To understand rapamycin mechanisms of action more comprehensively, 1014 temperature-sensitive (ts) fission yeast (Schizosaccharomyces pombe) mutants were screened in order to isolate strains in which the ts phenotype was rescu...

متن کامل

Translational control of c-MYC by rapamycin promotes terminal myeloid differentiation.

c-MYC inhibits differentiation and regulates the process by which cells acquire biomass, cell growth. Down-regulation of c-MYC, reduced cell growth, and decreased activity of the PI3K/AKT/mTORC1 signal transduction pathway are features of the terminal differentiation of committed myeloid precursors to polymorphonuclear neutrophils. Since mTORC1 regulates growth, we hypothesized that pharmacolog...

متن کامل

Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2

The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)-->Akt-->m...

متن کامل

Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis.

mTORC1 [mTOR (mammalian target of rapamycin) complex 1] regulates diverse cell functions. mTORC1 controls the phosphorylation of several proteins involved in mRNA translation and the translation of specific mRNAs, including those containing a 5'-TOP (5'-terminal oligopyrimidine). To date, most of the proteins encoded by known 5'-TOP mRNAs are proteins involved in mRNA translation, such as ribos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013